Journal Publications
Research Highlights



Direct Mapping of Local Seebeck Coefficient in 2D Material Nanostructures via Scanning Thermal Gate Microscopy

Harzheim, A.; Evangeli, C.; Kolosov, O.; Gehring, P.

2D Materials7, 041004 (2020)

Single-Material Graphene Thermocouples

Harzheim, A.; Koenemann, F.; Gotsmann, B.; van der Zant, H. S. J.; Gehring, P.

Advanced Functional Materials, 30, 2000574 (2020)

A Mechanically Tunable Quantum Dot in a Graphene Break Junction

Caneva, S.; Hermans, M. D.; Lee, M.; García-Fuente, A.; Watanabe, K.; Taniguci, T.; Dekker, C.; Ferrer, J.; van der Zant, H. S. J.; Gehring, P.

Nano Letters, 20, 4924-4931 (2020)

The role of metallic leads and electronic degeneracies in thermoelectric power generation in quantum dots

Harzheim, A.; Sowa, J. K.; Swett, J. L.; Briggs, G. A. D. Briggs; Mol, J. A.; Gehring, P.

Physical Review Research, 2, 013140 (2020)


Tunneling spectroscopy of localized states of WS2 barriers in vertical van der Waals heterostructures

Papadopoulos, N.; Gehring, P.; Watanabe, K.; Taniguchi, T.; van der Zant, H. S. J.; Steele, G. A.

Physical Review B, 101, 165303 (2020).

Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures

Gehring, P.; van der Star, M.; Evangeli, C.; Le Roy, J.; Bogani, L.; Kolosov, O.; van der Zant, H. S. J.

Applied Physics Letters, 115, 073103 (2019)

Single-molecule quantum-transport phenomena in break junctions

Gehring, P.; Thijssen, J. M.; van der Zant, H. S. J.

Nature Reviews Physics, 1, 381-396 (2019)

Ground-state spin blockade in a single-molecule junction

de Bruijckere, J.; Gehring, P.; Palacios-Corella, M.; Clemente-León, M.; Coronado, E.; Paaske, J.; Hedegård, P.; van der Zant, H. S. J.  

Physical Review Letters, 112, 197701 (2019)


Mechanically Controlled Quantum Interference in Graphene Break Junctions

Caneva, S.; Gehring, P.; García-Suárez, V. M.; García-Fuente, A.; Stefani, D.; Olavarria-Contreras, I. J.; Ferrer, J.; Dekker, C.; van der Zant, H.

Nature Nanotechnology, 13, 1126-1131 (2018)

Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices

Dubois, V.; Raja, S. N.; Gehring, P.; Caneva, S.; van de Zant, H. S. J.; Niklaus, F.; Stemme, G.

Nature Communications, 9, 3433 (2018)

Geometrically Enhanced Thermoelectric Effects in Graphene Nanoconstrictions

Harzheim, A.; Spiece, J.; Evangeli, C.; McCann, E.; Falko, V.; Sheng, Y.; Warner, J.; Briggs, G. A. D.; Mol, J.; Gehring, P.; Kolosov, O.

Nano Letters, 18, 7719-7725 (2018)


Field-Effect Control of Graphene-Fullerene Thermoelectric Nanodevices

Gehring, P.; Harzheim, A.; Spiece, J.; Evangeli, C.; Sheng, Y.; Rogers, G.; Mishra, A.; Robinson, B.; Porfyrakis, K.; Warner, J. H.;  Kolosov, O.; Briggs, G. A. D.; Mol, J. A.

Nano Letters, 17, 7055-7061 (2017)​

Scaling limits of graphene nanoelectrodes

Sarwat, G. S.; Gehring, P.; Rodriguez Hernandez, G.; Warner, J. H.; Briggs, G. A. D.; Mol, J. A.; Bhaskaran, H.

Nano Letters, 17, 3688-3693 (2017)

Distinguishing lead and molecule states in graphene-based single-electron transistors

Gehring, P.; Sowa, J. K.; Cremers, J.; Wu, Q.; Sadeghi, H.; Sheng, Y.; Warner, J. H.;  Lambert, C. J.; Briggs, G. A. D.; Mol, J. A.

ACS Nano, 11, 5325-5331 (2017)


Ungewöhnliche Phasen im Flächenland

Burghard, M.; Gehring, P.

Physik in unserer Zeit, 47, 272 (2016)

Quantum interference in graphene nanoconstrictions

Gehring, P.; Sadeghi, H.; Sangtarash, S.; Lau, C. S.; Liu, J.; Ardavan, A.; Warner, J. H.;  Lambert, C. J.; Briggs, G. A. D.; Mol, J. A.

Nano Letters, 16, 1179–1184 (2016)

Surface oxidation effect on the electrical behaviour of Bi2Te2Se nanoplatelets

Gehring, P.; Reusch, F. B.; Mashhadi, S. S.; Burghard, M. and Kern, K.

Nanotechnology, 27, 285201 (2016)

Harnessing Topological Band Effects in Bismuth Telluride Selenide for Large Enhancements in Thermoelectric Properties through Isovalent Doping

Devender, Gehring, P.; Gaul, A.; Hoyer, A.; Vaklinova, K.; Mehta, R. J.; Burghard, M.; Borca‐Tasciuc, T.; Singh, D. J.; Kern, K.; Ramanath, G. Advanced Materials, 28, 6436-6441 (2016)


Three-terminal graphene single-electron transistor fabricated using feedback-controlled electroburning

Puczkarski, P.; Gehring, P.; Lau, C.S.; Liu, J.; Ardavan, A.; Warner, J.H.; Briggs, G.A.D.; Mol, J.A.

Applied Physics Letters, 107, 133105 (2015)

Thin-layer black phosphorus/GaAs heterojunction p-n diodes

Gehring, P.; Urcuyo, R.; Duong, D.; Burghard, M.; Kern, K.

Applied Physics Letters, 106, 233110 (2015)

Dimensional crossover in the quantum transport behaviour of the natural topological insulator Aleksite

Gehring, P.; Vaklinova, K.; Hoyer, A.; Benia, H.M.; Skakalova, V.; Argentero, G.; Eder, F.; Meyer, J.; Burghard, M.; Kern, K.

Scientific Reports, 5, 11691 (2015)

Tetradymites as Natural Hyperbolic Materials for the Near–Infrared to Visible

Esslinger, M.; Vogelgesang, R.; Talebi, N.; Khunsin, W.; Gehring, P.; de Zuani, S.; Gompf, B.; Kern, K.

ACS Photonics, 1, 1285 (2014)

Topologische Isolatoren

Gehring, P.; Burghard, M.

Physik in unserer Zeit, 45, 299 (2014)

A Natural Topological Insulator

Gehring, P.; Benia, H. M.; Weng, Y.; Dinnebier, R.; Ast, C. R.; Burghard, M. and Kern, K.

Nano Letters, 13, 1179–1184 (2013)

Growth of High-Mobility Bi2Te2Se Nanoplatelets on hBN Sheets by van der Waals Epitaxy

Gehring, P.; Gao, B. F.; Burghard, M. and Kern, K.

Nano Letters, 12, 5137–5142 (2012)

Two–dimensional magnetotransport in Bi2Te2Se nanoplatelets

Gehring, P.; Gao, B. F.; Burghard, M. and Kern, K.

Applied Physics Letters, 101, 023116 (2012)

Gate–controlled linear magnetoresistance in thin Bi2Se3 sheets

Gao, B. F.; Gehring, P.; Burghard, M. and Kern, K.

Applied Physics Letters, 100, 212402 (2012)

Evidence for resonant energy transfer in terbium-doped (Al,In)N films

Gehring, P.; Weng, Y.; Wu, Z.; and Strunk, H. P.

IOP Conference Series: Materials Science and Engineering, 15, 012007 (2010)

Photoluminescence from AlxIn1-xN layers doped with Tb3+ ions

Gehring, P.; Weng, Y.; Wu, Z.; and Strunk, H. P.

Journal of Physics: Conference Series, 281, 012014 (2010)

2010 - 2015

Single-Material Graphene Thermocouples

We report that U‐shaped graphene strips comprising one wide and one narrow leg form a single material thermocouple due to the increased influence of electron edge scattering in a narrow channel. This leads to different Seebeck coefficients in the two legs, which for the devices tested, yield a maximum sensitivity of ΔS ≈ 39 μV/K. (click on image)

Review on: Single-molecule quantum-transport phenomena in break junctions

We present the status of the molecular electronics field from this quantum-transport perspective with a focus on recent experimental results obtained using break-junction devices, including scanning probe and mechanically controlled break junctions, as well as electromigrated gold and graphene break junctions. (click on image)

Complete mapping of the thermoelectric properties of a single molecule

Gehring, P.; Sowa, J.K.; Hsu, C.; de Bruijckere, J.; van der Star, M.; Le Roy, J.J.; Bogani, L.; Gauger, E.M.; van der Zant, H.S.J.​

Nature Nanotechnology, DOI:10.1038/s41565-021-00859-7 (2021)


Complete mapping of the thermoelectric properties of a single molecule

One of the dreams of today’s science is to be capable of harvesting electricity back from dissipated heat. The key to thisprobably resides in circuits that contain single molecules: instead of being limited to the classical conductance, the thermopower can be enhanced dramatically by the properties of quantum states. But then, what quantum states offer good efficiency? What characteristics are desirable? To these questions, theory often offers contrasting predictions, and experiments have given no proof. Our measurements, first of their kind, unveil the different contributions of different states, and unveil the importance of electron-vibrational coupling and of spin entropy. We thus validate theories about what factors impact most crucially the thermoelectric properties, and indicate the synthetic directions to influence the heat to energy conversion in single molecules. (click on image)

Nanoscopic Physics (NAPS)
Institute of Condensed Matter and Nanosciences (IMCN)
Université Catholique de Louvain (UCL)

  • Twitter
  • LinkedIn